8 research outputs found

    Design of a Novel Antenna Array Beamformer Using Neural Networks Trained by Modified Adaptive Dispersion Invasive Weed Optimization Based Data

    Get PDF
    A new antenna array beamformer based on neural networks (NNs) is presented. The NN training is performed by using optimized data sets extracted by a novel Invasive Weed Optimization (IWO) variant called Modified Adaptive Dispersion IWO (MADIWO). The trained NN is utilized as an adaptive beamformer that makes a uniform linear antenna array steer the main lobe towards a desired signal, place respective nulls towards several interference signals and suppress the side lobe level (SLL). Initially, the NN structure is selected by training several NNs of various structures using MADIWO based data and by making a comparison among the NNs in terms of training performance. The selected NN structure is then used to construct an adaptive beamformer, which is compared to MADIWO based and ADIWO based beamformers, regarding the SLL as well as the ability to properly steer the main lobe and the nulls. The comparison is made considering several sets of random cases with different numbers of interference signals and different power levels of additive zero-mean Gaussian noise. The comparative results exhibit the advantages of the proposed beamformer

    Wavelet analysis of the LF radio signals collected by the European VLF/LF network from July 2009 to April 2011

    No full text
    In 2008, a radio receiver that works in very low frequency (VLF; 20-60 kHz) and LF (150-300 kHz) bands was developed by an Italian factory. The receiver can monitor 10 frequencies distributed in these bands, with the measurement for each of them of the electric field intensity. Since 2009, to date, six of these radio receivers have been installed throughout Europe to establish a 'European VLF/LF Network'. At present, two of these are into operation in Italy, and the remaining four are located in Greece, Turkey, Portugal and Romania. For the present study, the LF radio data collected over about two years were analysed. At first, the day-time data and the night-time data were separated for each radio signal. Taking into account that the LF signals are characterized by ground-wave and sky-wave propagation modes, the day-time data are related to the ground wave and the night-time data to the sky wave. In this framework, the effects of solar activity and storm activity were defined in the different trends. Then, the earthquakes with M ≥5.0 that occurred over the same period were selected, as those located in a 300-km radius around each receiver/transmitter and within the 5th Fresnel zone related to each transmitter-receiver path. Where possible, the wavelet analysis was applied on the time series of the radio signal intensity, and some anomalies related to previous earthquakes were revealed. Except for some doubt in one case, success appears to have been obtained in all of the cases related to the 300 km circles in for the ground waves and the sky waves. For the Fresnel cases, success in two cases and one failure were seen in analysing the sky waves. The failure occurred in August/September, and might be related to the disturbed conditions of the ionosphere in summer. © 2012 by the Istituto Nazionale di Geofisica e Vulcanologia. All rights reserve

    Anomalies observed in VLF and LF Radio Signals on the occasion of the western Turkey Earthquake (M=5.7) on may 19, 2011

    No full text
    Since 2009 a network of VLF (20 - 60 kHz) and LF (150 - 300 kHz) radio receivers is operating in Europe in order to study the disturbances produced by the earthquakes on the propagation of these signals. In 2011 the network was formed by nine receivers, of which three are located in Italy and one is in Austria, Greece, Portugal, Romania, Russia and Turkey. On May 19, 2001 an earthquake (Mw = 5.7) occurred in western Turkey, that is inside the “sensitive” area of the network. The radio data collected during April-May 2011 were studied using the Wavelet spectra, the Principal Component Analysis and the Standard Deviation trends as different methods of analysis. Evident anomalies were revealed both in the signals broadcasted by the TRT transmitter (180 kHz) located near Ankara and in a VLF signal coming from a transmitter located in Western Europe and collected by the receiver TUR of the network located in eastern Turkey. Evident precursor phases were pointed out. Some differences in the efficiency of the three analysis methods were revealed

    Biological Effects of EMFs

    No full text

    Stability-based classification for ankle fracture management and the syndesmosis injury in ankle fractures due to a supination external rotation mechanism of injury

    No full text
    corecore